参考文档
手册所述,GObject 信号(Gignal)主要用于特定事件与响应者之间的连接,它与操作系统级中的信号没有什么关系。例如,当我向一个文件中写入数据的时候,我期望能够有一个或多个函数响应这个“向文件写入数据”的事件,这一期望便可基于 GObject 信号予以实现。
为了更好的理解 GObject 信号机制的内幕,我们需要从回调函数开始。
基于回调函数与可变参数的事件响应
首先,写出事件的制造者,它是一个向文件写入数据的函数 file_write:
#include <stdio.h>
void
file_write (FILE *fp, const char *buffer)
{
fprintf (fp, "%s\n", buffer);
}
向文件写入数据完毕之后,我们希望有一个函数能够将文件全部的内容在终端打印出来,所以我们又增加了一个函数 file_print
,并对 file_write 函数进行一点修改:
void
file_print (FILE *fp)
{
char *line = NULL;
size_t len = 0;
ssize_t read;
while ((read = getline(&line, &len, fp)) != -1){
printf("%s", line);
}
free (line);
}
void
file_write (FILE *fp, const char *buffer)
{
fprintf (fp, "%s\n", buffer);
file_print (fp);
}
但是,作为设计者应当尽可能的考虑更多更复杂的变化。单纯增加一个 file_print
函数,并在 file_write
函数中调用,固然可以实现“文件变化时便通知 file_print
函数去执行打印任务”,但是这只是我们的一厢情愿的想法,也许 file_write 函数的其他使用者希望在向文件写入数据后能够将文件内容以 XML、TeX 或者别的甚么格式打印出来呢?
为了应对更多的使用者的需求,我们需要使用回调函数来隔离变化,例如:
typedef void (*ChangedCallback) (FILE *fp);
void
file_write (FILE *fp, const char *buffer, ChangedCallback callback)
{
fprintf (fp, "%s\n", buffer);
callback (fp);
}
这样,如果 file_write
的使用者仅需要在文件内容发生变动后打印文件的原始数据,那么就可以将前文中的 file_print
函数作为参数传递于 file_write
函数。如果 file_write
的使用者希望在文件内容发生变动后以 XML 格式打印文件,那么他可以写一个 file_print_xml
函数并将其传递于 file_write
函数。
如果进一步考虑更多的变化,例如在 file_write
向文件写入数据后,我们希望能够一举“通知”文件原始数据打印、XML 格式打印、TeX 格式打印等函数,这应当如何处理?如果使用 C 语言的可变参数功能,这个问题很好解决。例如,可以将 file_write 函数定义为:
void
file_write (FILE *fp, const char *buffer, ...)
{
fprintf (fp, "%s\n", buffer);
va_list args;
ChangedCallback callback;
va_start (args, buffer);
while (1) {
callback = va_arg (args, ChangedCallback);
if (!callback)
break;
callback (fp);
}
va_end(args);
}
这样,在使用 file_write 函数的时候,可传递多个函数供其调用,例如:
file_write (fp, "Hello world!",
file_print,
file_print_xml,
file_print_tex,
NULL);
基于回调函数与可变参数实现特定“事件”的多个“响应”,这种方案是最有效的,但不是最好的。例如,受到函数栈空间的大小限制,可变参数用尽之时。此外,这种方式使用起来也不够直观。
基于 GObject 信号的事件响应
对于上一节的示例所解决的问题,基于 GObjet 信号的解决方案大致像下面这样:
void
file_write (File *self, const char *buffer)
{
/* 向文件写入数据 */
... ... ...
/* 发射“文件改变了”这一信号 */
g_signal_emit (self, CHANGED, 0);
}
int
main (void)
{
File *file = file_new ("test.txt");
g_signal_connect (file, "changed", file_print, NULL);
g_signal_connect (file, "changed", file_print_xml, NULL);
g_signal_connect (file, "changed", file_print_tex, NULL);
... ... ...
}
上述代码的含义如下:
- 在
file_write
函数中,文件数据写入操作完毕后,就这一事件向外发射一个“CHANGED”信号,告诉所有响应者,文件内容改变了。至于哪些函数是这一信号的响应者,file_write
函数不必知道。 file_write
函数的使用者,如果希望哪些函数用于响应file_write
函数修改文件内容这一事件,那么就使用g_signal_connect
函数(实际上它是一个宏)将响应函数与信号挂接到一起。这样,一旦事件的对应信号被g_signal_emit
所发射,这些响应函数便会被自动调用。
为了实现上述的“信号/响应”模拟,那么 file_write
函数的参数便不可能再是 FILE 类型的文件指针了,而是我们自定义的 File 类型的对象,其中封装了“信号/响应”功能。事实上,GObject 类的内部便封装了这些功能,所有经由 GObject 子类化而产生的对象,便可拥有这些功能。
GObject 子类对象的信号处理
首先,我们定义 GObject 子类 MyFile。这个过程,我们应当已经不再陌生,参考文档 [1]。
my-file.h 头文件内容如下:
#ifndef MY_FILE_H
#define MY_FILE_H
#include <glib-object.h>
#define MY_TYPE_FILE (my_file_get_type ())
#define MY_FILE(object) G_TYPE_CHECK_INSTANCE_CAST ((object), MY_TYPE_FILE, MyFile)
#define MY_IS_FILE(object) G_TYPE_CHECK_INSTANCE_TYPE ((object), MY_TYPE_FILE))
#define MY_FILE_CLASS(klass) (G_TYPE_CHECK_CLASS_CAST ((klass), MY_TYPE_FILE, MyFileClass))
#define MY_IS_FILE_CLASS(klass) (G_TYPE_CHECK_CLASS_TYPE ((klass), MY_TYPE_FILE))
#define MY_FILE_GET_CLASS(object) (\
G_TYPE_INSTANCE_GET_CLASS ((object), MY_TYPE_FILE, MyFileClass))
typedef struct _MyFile MyFile;
struct _MyFile {
GObject parent;
};
typedef struct _MyFileClass MyFileClass;
struct _MyFileClass {
GObjectClass parent_class;
};
GType my_file_get_type (void);
#endif
my-file.c 源文件内容如下:
#include "my-file.h"
G_DEFINE_TYPE (MyFile, my_file, G_TYPE_OBJECT);
#define MY_FILE_GET_PRIVATE(object) (\
G_TYPE_INSTANCE_GET_PRIVATE ((object), MY_TYPE_FILE, MyFilePrivate))
typedef struct _MyFilePrivate MyFilePrivate;
struct _MyFilePrivate {
GString *name;
GIOChannel *file;
};
enum PropertyDList {
PROPERTY_FILE_0,
PROPERTY_FILE_NAME
};
static void
my_file_dispose (GObject *gobject)
{
MyFile *self = MY_FILE (gobject);
MyFilePrivate *priv = MY_FILE_GET_PRIVATE (self);
if (priv->file){
g_io_channel_unref (priv->file);
priv->file = NULL;
}
G_OBJECT_CLASS (my_file_parent_class)->dispose (gobject);
}
static void
my_file_finalize (GObject *gobject)
{
MyFile *self = MY_FILE (gobject);
MyFilePrivate *priv = MY_FILE_GET_PRIVATE (self);
g_string_free (priv->name, TRUE);
G_OBJECT_CLASS (my_file_parent_class)->finalize (gobject);
}
static void
my_file_set_property (GObject *object, guint property_id,
const GValue *value, GParamSpec *pspec)
{
MyFile *self = MY_FILE (object);
MyFilePrivate *priv = MY_FILE_GET_PRIVATE (self);
switch (property_id){
case PROPERTY_FILE_NAME:
if (priv->name)
g_string_free (priv->name, TRUE);
priv->name = g_string_new (g_value_get_string (value));
priv->file = g_io_channel_new_file (priv->name->str, "a+", NULL);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, property_id, pspec);
break;
}
}
static void
my_file_get_property (GObject *object, guint property_id,
GValue *value, GParamSpec *pspec)
{
MyFile *self = MY_FILE (object);
MyFilePrivate *priv = MY_FILE_GET_PRIVATE (self);
switch (property_id){
case PROPERTY_FILE_NAME:
g_value_set_string (value, priv->name->str);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, property_id, pspec);
break;
}
}
static
void my_file_init (MyFile *self)
{
}
static
void my_file_class_init (MyFileClass *klass)
{
g_type_class_add_private (klass, sizeof (MyFilePrivate));
GObjectClass *base_class = G_OBJECT_CLASS (klass);
base_class->set_property = my_file_set_property;
base_class->get_property = my_file_get_property;
base_class->dispose = my_file_dispose;
base_class->finalize = my_file_finalize;
GParamSpec *pspec;
pspec = g_param_spec_string ("name",
"Name",
"File name",
NULL,
G_PARAM_READABLE | G_PARAM_WRITABLE | G_PARAM_CONSTRUCT);
g_object_class_install_property (base_class, PROPERTY_FILE_NAME, pspec);
g_signal_new ("file_changed",
MY_TYPE_FILE,
G_SIGNAL_RUN_LAST | G_SIGNAL_NO_RECURSE | G_SIGNAL_NO_HOOKS,
0,
NULL,
NULL,
g_cclosure_marshal_VOID__VOID,
G_TYPE_NONE,
0);
}
void
my_file_write (MyFile *self, gchar *buffer)
{
MyFilePrivate *priv = MY_FILE_GET_PRIVATE (self);
g_io_channel_write_chars (priv->file, buffer, -1, NULL, NULL);
g_io_channel_flush (priv->file, NULL);
g_signal_emit_by_name(self, "file_changed");
}
MyFile 类的使用者——main.c 文件内容如下:
#include "my-file.h"
static void
file_print (gpointer gobject, gpointer user_data)
{
g_printf ("invoking file_print!\n");
}
static void
file_print_xml (gpointer gobject, gpointer user_data)
{
g_printf ("invoking file_print_xml!\n");
}
static void
file_print_tex (gpointer gobject, gpointer user_data)
{
g_printf ("invoking file_print_tex!\n");
}
int
main (void)
{
g_type_init ();
MyFile *file = g_object_new (MY_TYPE_FILE, "name", "test.txt", NULL);
g_signal_connect (file, "file_changed", G_CALLBACK (file_print), NULL);
g_signal_connect (file, "file_changed", G_CALLBACK (file_print_xml), NULL);
g_signal_connect (file, "file_changed", G_CALLBACK (file_print_tex), NULL);
my_file_write (file, "hello world!\n");
g_object_unref (file);
return 0;
}
虽然 GObject 子类化以及对象私有属性等知识均已有所介绍,但是上述的 MyFile 类的实现依然有许多细节需要加以解释。
首先,是在 MyFile 类的类结构题初始化函数 my_file_class_init
中,除了设置类属性之外,我们调用了 g_signal_new
函数用于建立 MyFile 类型与 "file_changed"
信号的关联。至于究竟是何种关联,那不是我们所关心的!还有,g_signal_new
函数的参数有很多,很复杂,推荐阅读文档 [2]。
其次,是 MyFile 对象的析构函数。在 my-file.c 源文件中,函数 my_file_dispose
与 my_file_finalize
构成了 MyFile 对象的析构函数,前者用于解除 MyFile 对象对其它对象(是指那些具有引用计数且被 GObject 库的类型系统所管理的对象)的引用,后者用于 MyFile 对象属性的内存释放。至于分何要分为两个阶段进行 GObject 子类对象析构以及相关细节知识,还是另外开一篇文章来讨论吧,否则问题会被越搞越复杂。或者,也可阅读文档 [3]。
小结
当我刚开始写这篇文章的时候,我期望能够理清 GObject 信号与闭包的关系,但是现在不得不宣布很失败。还是冷静几天再卷土重来吧。
这篇文章,写了一整天。现在我不得不告诉你,其实 GObject 真的很复杂。不过,从我向自己抛出了第一个谎言之后,一直坚持到现在。尽管复杂,但是我们正在一点一点克服它。但是,最大的敌人不是 GObject,而是我自己。因为在这个过程中,我经常无法抗拒一种解剖 GObject 的欲望。它导致我经常陷入一个又一个的技术细节,而忘记了当初的目标。这种欲望之所以出现,是因为 GObject 是开源的,它赋予了我们每个人可以窥视它内部实现的权力。
我需要再次纠正一下认识。对于 GObject 牌的汽车,我现在只需要学习如何驾驶它,根本不需要去了解它的发动机是如何工作的。