单调栈解题模板

单调栈

单调栈实际上就是栈,只是利用了一些巧妙的逻辑,使得每次新元素入栈后,栈内的元素都保持有序(单调递增或单调递减)。

Next Greater Number

给你一个数组,返回一个等长的数组,对应索引存储着下一个更大元素,如果没有更大的元素,就存 -1。

函数签名如下:

vector<int> nextGreaterElement(vector<int>& nums);

比如说,输入一个数组nums = [2,1,2,4,3],你返回数组[4,2,4,-1,-1]

这个问题可以这样抽象思考:把数组的元素想象成并列站立的人,元素大小想象成人的身高。这些人面对你站成一列,如何求元素「2」的 Next Greater Number 呢?很简单,如果能够看到元素「2」,那么他后面可见的第一个人就是「2」的 Next Greater Number,因为比「2」小的元素身高不够,都被「2」挡住了,第一个露出来的就是答案。

图片

vector<int> nextGreaterElement(vector<int>& nums) {
    vector<int> res(nums.size()); // 存放答案的数组
    stack<int> s;
    // 倒着往栈里放
    for (int i = nums.size() - 1; i >= 0; i--) {
        // 判定个子高矮
        while (!s.empty() && s.top() <= nums[i]) {
            // 矮个起开,反正也被挡着了。(从后往前遍历,top就是后面的矮个,nums[i]是前面的高个)
            s.pop();
        }
        // nums[i] 身后的 next great number
        res[i] = s.empty() ? -1 : s.top();
        // 
        s.push(nums[i]);
    }
    return res;
}

这就是单调队列解决问题的模板。for 循环要从后往前扫描元素,因为我们借助的是栈的结构,倒着入栈,其实是正着出栈。while 循环是把两个「个子高」元素之间的元素排除,因为他们的存在没有意义,前面挡着个「更高」的元素,所以他们不可能被作为后续进来的元素的 Next Great Number 了

问题变形

给你一个数组T,这个数组存放的是近几天的天气气温,你返回一个等长的数组,计算:对于每一天,你还要至少等多少天才能等到一个更暖和的气温;如果等不到那一天,填 0

这个问题本质上也是找 Next Greater Number,只不过现在不是问你 Next Greater Number 是多少,而是问你当前距离 Next Greater Number 的距离而已。

相同的思路,直接调用单调栈的算法模板,稍作改动就可以,直接上代码吧:

vector<int> dailyTemperatures(vector<int>& T) {
    vector<int> res(T.size());
    // 这里放元素索引,而不是元素
    stack<int> s; 
    /* 单调栈模板 */
    for (int i = T.size() - 1; i >= 0; i--) {
        while (!s.empty() && T[s.top()] <= T[i]) {
            s.pop();
        }
        // 得到索引间距
        res[i] = s.empty() ? 0 : (s.top() - i); 
        // 将索引入栈,而不是元素
        s.push(i); 
    }
    return res;
}

如何处理环形数组

同样是 Next Greater Number,现在假设给你的数组是个环形的,如何处理?

对于这种需求,常用套路就是将数组长度翻倍

图片

vector<int> nextGreaterElements(vector<int>& nums) {
    int n = nums.size();
    vector<int> res(n);
    stack<int> s;
    // 假装这个数组长度翻倍了
    for (int i = 2 * n - 1; i >= 0; i--) {
        // 索引要求模,其他的和模板一样
        while (!s.empty() && s.top() <= nums[i % n])
            s.pop();
        res[i % n] = s.empty() ? -1 : s.top();
        s.push(nums[i % n]);
    }
    return res;
}